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1. Project Summary

Drug discovery is a challenging and expensive process that often takes years to complete.
Though Computer-Aided-Drug-Design has reduced the discovery time, it is also met with
various challenges such as low competency in data handling, small data size, large correlation
in data, missing data and the inability or difficulty in explaining computational models. This
project aims to develop a computational tool that employs data mining, preprocessing, and
cleaning, feature engineering, machine learning for predicting the bioactivity of hit
compounds, and molecular docking between the hit and target compound. While the
molecular docking part is meant to confirm the predictions of our machine learning models
through visualization, we plan to incorporate drug repurposing into our product to ease the
process of lead compound discovery. This tool will help scientists researching Alzheimer’s
drugs, drugs for different carcinomas and other diseases to save time and money by running a
check on the target to find bioactive drug candidates. The algorithm will also be made to
provide automatic data mining from python supported client databases such as ChEMBL and
NCBI, exploratory analysis and visualization, as well as building, training and optimizing
machine learning models from scratch. Most importantly, our algorithms will be packaged
into a user-friendly web application that can be accessed through the net. In short, we built a
python API to mine and clean the dataset, build, train and optimize machine learning models,
as well as build a web application where users can use our pretrained models to predict the
bioactivity of certain compounds on their target compounds of interest, validate the drug using
molecular docking

2. Problem

In a normal drug discovery pipeline, scientists may spend billions of dollars for upto 15 years
and still end up not discovering a drug for a given disease. Efforts using computational
approaches such as making use of drug databases , drug repurposing models, molecular
docking and machine learning, has made it obvious that computational drug discovery will go
a long way to saving humanity by reducing the drug discovery time and cost. Although these
approaches show great promise in drug discovery, they have some major challenges. For
instance, in a structure-based drug discovery paradigm (Batool et al., 2019) such as that
employed in our research, molecular descriptors are often used to fit machine learning models
which are used to predict the bioactivity of the compound on a given target. One major
challenge is that there are hundreds of molecular descriptors, usually greater than the number
of observable samples. A situation like this often makes it very hard to apply machine
learning to predict because the models often overfit. Another problem is that most of the
computational methods require expertise knowledge in computing to implement. Therefore,
researchers who do not have coding experience nor experience in interpreting machine
learning models may not be able to use these models. A common solution to solve the
overfitting problem is to use more observable samples to train the models. However,
biological data is often small limited in the number of samples (Zhang & Rajapakse, 2009,
1-43). Another challenge is that some of the data entries contain some missing values, and the
performance of models may be poorly evaluated. Moreso, predicting a drug as bioactive is not
enough to validate it for clinical trials. Our research aims to solve or contribute to a solution to
most of these problems by building a web application with the possibility to predict the



bioactivity of compounds using machine learning, and validate compounds by molecular
docking.
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Figure 1. Cost of developing a drug from the 1970s until 2010s ("Drug development cost
United States 1970-2016 | Statista”, 2020).

3. Solution

The unceasing development of technology and the widespread use of artificial intelligence
throughout the world has led to important developments in medicine as well as in other fields.
In recent years, with the effective use of computational approaches in the field of medicine,
diagnosis, treatment and follow-up of diseases are performed much faster and more efficiently
compared to previous times (Asai, Konno, Taniguchi, Vecchione & Ishii, 2021). One of the
aims of the use of artificial intelligence in healthcare is to reduce the cost and time of drug
discovery and also to contribute to the production of much more effective drugs. The use of
computational approaches is known to have great potential for drug discovery, but still has
challenges that need to be developed. For this purpose, in our study, we will develop a web
application to be used in drug discovery (especially for Alzheimer’s disease) by combining
the necessary computational approaches such as use of drug databases (ChEMBL), machine
learning, drug repurposing and molecular docking. First, the data is obtained from the Chembl
database and cleaned as explained in the data mining part. Next, with the cleaned data,
machine learning models are used for determining the best type of molecular descriptor
calculator and best feature selection methods. And, the best descriptors are used to train

several classifiers which are evaluated using a stratified k-fold strategy (Kamber et al., 2011;



Manorathna, 2020 ). The best model is selected and optimized. Finally, to check the model’s

sensitivity, molecular docking is performed between active compounds and the target and

based on the root mean square deviation (RMSD) score, the compound is validated as active

or not. Our project pipeline can be summarized in figure 2 below.

Y — e
f \
| Select Clean Data pompulte Featu‘re
\ target/ Fingerprints Selection
\ \ - . @
I - Missing Data - Padel - Morgan radius
Handling Descriptors - Morgan bits
- Feature - Morgan _PCA
> 200 Engineering Descriptors - TruncatedSVD
compounds - Data Labelling - Var.Threshold
- SelectFromModel
P - SelectKBest
Find Disease
Targets ————
e A
Optimize Build and Train |_ |
Best Model Models
<= 200
@@
compounds
: - SVC
- — g - MLPClassifier
Don't — - grid search - XGBClassifier
- RandomForest
select Save Model - LogisticRegression
- VotingClassifier
- - etc

Figure 2 (a). Pipeline in service development
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4. Method
4.1 Data Mining

The data used for our project is obtained from the ChEMBL database (Mendez D et al, 2019),
and is obtained by real-time data mining using the chembl client python API. With the chembl
API, data can be obtained for diseases and targets by passing the disease name or target name
to a class object in the API. The resulting data is raw, displayed as a pandas dataframe and
may contain missing data entries. For machine learning purposes, the relevant columns are the
columns that contain the molecule's canonical smiles and the standard bioactivity values
(IC50) on the target in nano-molar. The canonical smiles can be transformed into vectors that
represent the molecule’s descriptors and these vectors can then be fit into machine learning
models along with the bioactivity values. Therefore as a first step to cleaning the data, along
with molecule IDs, only the canonical smiles and standard bioactivity columns are selected.
For further data cleaning, all entries with either missing smiles or missing standard values are
removed. Also, Some bioactivity values are negative, these are removed as well because they
cannot be standardized to pIC50 values. Next, the standard values are normalized and then
converted to pIC50 values which are stored on a new column named pIC50. Finally, standard
activities greater than or equal to 1000 are considered inactive whereas values less than 1000
are considered active and these new labels are stored on a new column called bioactivity class.
It is important to note that the IC50 values actually represent the concentration of drug
compounds needed to cause 50% deactivation of the target (Swinney, 2011). And so the
smaller the IC50 value, the more active the molecule is, and vice versa. The 1000 nM
threshold is chosen.

Table 1. A Sample Clean Dataset from our Data Mining Pipeline

molecule_chembl_id canonical_smiles bioactivity class standard value plC50
390 CHEMBL3286987 COclcc(/C=c2\sc3nc(-c4ccnccdC)en3c2=0)cc(0C)clO active 32.0 7.494850
391 CHEMBL3286988 COclcc(/C=c2\sc3nc{-cdccec(Cl)cd)en3c2=0)cc(OC... active 6.0 8221849
392 CHEMBL3286989  COclcc{/C=c2\scanc(-cdccec(C(F)(F)F)cd)en3c2=0... active 123.0 6.910095
393 CHEMBL3286990  COclcc{/C=c2\scanc(-cdccec(OC(F)(F)F)cd)ende2=... inactive 10000.0 5.000000
394 CHEMBL191083 CN(C)clccc2ne3cec(=[N+](C)C)cec-3sc2cl active 550.0 6.259637
395 CHEMBL3330737 N&#C/C(=C\clcee(-c2cee(-c3cce(N(cdccooed)cdecec. .. active 410.0 6.387216
396 CHEMBL3330738 N&CC(C#N)=Cclccc(-c2cce(-c3ccc(MN(cdcceocd)cdec... inactive 10000.0 5.000000
397 CHEMBL333073%9  O=Cclcce(-c2ccc({-c3cco(M(cdcccocd)cdocoocd)oc... inactive 71000 5148742
398 CHEMEL3330740 N#C/C{=C\clcce(-c2cce(-c3cce(MN(cdcoeocd)cdeoce... inactive 1500.0 5.823909
399 CHEMBL3330741 O=CI1NC(=0)C(=Cc2ccc(-c3cce(-cdcce{N(cScceeeh)ce... inactive 10000.0 5.000000

4.2 Machine Learning

From the clean data above, both regression and classification models can be built. Both types
of models make use of the canonical smiles as the input features while the bioactivity class
column is used as labels for classification and pIC50 column for regression. First, the dataset
is upsampled incase of class imbalance. Then, regression is used to determine the best type of
molecular descriptor calculator while classification is implemented more in the other steps of
our project. And these experiments were all performed on the beta amyloid 4 protein target for



Alzheimer's disease.

4.2.1 Selecting Descriptor Calculator

The two descriptor calculators we worked with are the Padel Software and Morgan
FingerPrinter on RDKit python API. Among the Padel descriptors were Pubchem Fingerprint,
EState Fingerprint, AtomPairs2D Fingerprint, GraphOnly Fingerprint, KlekotaRoth
Fingerprint, etc. Several regression models (RandomForest, DecisionTree, SVR,
SGDRegressor, LinearRegression, MLPRegressor, VotingRegressor, etc) were trained on each
of these descriptors including the morgan fingerprints and the average score of these models,
the best fingerprints were thus determined.

Box plot of Model Performance Accross Descriptors
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Figure 3. Determination of Best Molecular Descriptors Using Trained Model Results

As can be seen from figure 1 above, the majority of the models perform best with morgan
descriptors compared to when other descriptors are used. For this reason, morgan descriptors
were selected for further experimentation.

4.2.2 Selecting a Feature Selection Method and Best Model

Morgan descriptors calculated using RDKit can be as many as 30,000 or more with varying
radii. By default, 1024 descriptors are computed with a Morgan radius of 1. Compared to the
number of samples in the experimental dataset (1098), this makes a number of sample to
feature ratio of approximate 1. This ratio is not so good and may result in overfitting of
models. Therefore, different feature selection methods are tried. This time, classification
models are used since our aim is to classify compounds into the active and inactive classes.



Box plot of Performance of Feature Selection Methods
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Figure 4. Feature Selection Method Determination Using Trained Models
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Figure 5. Best Model Across Different Feature Selection Methods

A stratified 10-fold cross validation strategy was used to evaluate the models on each
descriptor dataset and average taken. To determine the best feature selection method, the
average score for all models is taken on each feature selection method and in our case study,
selectFromModel scikit-learn method was the best with mean score 87.99%. Moreso, to select
the best model, the average of model performance for each model is taken across all feature
selection methods, and the support vector classifier seems to be the best. Other models like
the gradientboostingclassifier, voting classifier, K-nearest neighbour and neural networks are
also doing well with mean scores above 90%.

To ensure that feature selection is not applied if not needed, an option with no feature
selection is implemented in our pipeline.

4.2.3 Morgan Parameter Optimization

Since Morgan descriptors are computed differently when different radii and number of bits are
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specified, fine tuning is performed for radius values in the range 1 to 5 and bits values from
512 to 2024 with steps of 256, to determine the best model parameters. For this determination,
the best model SVC, and no feature selection are used. Thus, a best accuracy of 92.6 (£ 1.6)
% was obtained on Morgan radius 4 and number of bits 768. And a score of 92.5 ( £ 1.6) %
was obtained with feature selection.

4.2.4 Model Optimization and Evaluation

For the selected best model (SVC), hyper-parameter tuning is performed on its parameters
using grid search and the results are compared before and after tuning. To do this, the dataset
is split into 90 % train (988 samples) and 10% test (110 samples). The model is trained on the
training dataset and evaluated on the test dataset both before and after tuning and the results
were obtained using sklearn classification report method as shown on table 2 below. The
optimized model was then saved for later use.

Table 2. Test Results of SVC Before and After Hyper-parameter Tuning

Results on Normal SVC
Precision Recall F1-score Support
Active 0.88 0.88 0.88 42
Inactive 0.93 0.93 0.93 68
Accuracy 0.91 110
Macro-average 0.90 0.90 0.90 110
Weighted-average | 0.91 0.91 0.91 110

Results on Optimized SVC

Precision Recall F1-score Support
Active 1.00 0.98 0.99 42
Inactive 0.99 1.00 0.99 68
Accuracy 0.99 110
Macro-average 0.99 0.99 0.99 110
Weighted-average | 0.99 0.99 0.99 110

These results show that very accurate machine models can be built to predict the bioactivity
drugs on the beta amyloid 4 protein. To make it easier to reproduce this machine learning
pipeline on any other target, an API was built to handle the data mining and cleaning, as well
as the machine learning model building, selection of feature selection method, selection of
best model, Morgan tuning and hyper parameter tuning. Therefore in a similar way we plan to
build machine learning models for as many targets as possible considering that the data is
available.
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4.3 Drug Repurposing

Drug repurposing, also called drug repositioning, is a method used to assign FDA approved
drugs to other diseases for which the drug was not meant for (Pushpakom et al., 2018). It
involves searching through drug databases and using computational approaches to determine
if the drugs will work on a given target. Our approach aims at narrowing the search field. That
is, instead of searching for all drugs in the drug database, the search will be limited to drug
compounds that are active on other targets that are closely related to the given target. To
compute the relationship between targets, 14,855 targets are downloaded from the ChEMBL
database and a similarity score will be computed between all targets pair-wise according to
their number of shared active compounds. Then a graph will be created after applying sklearn
agglomerative clustering algorithm on the similarity scores. This graph will show the
relationship between targets. That is, targets with a great number of shared drugs will likely be
clustered together whereas targets with no active drugs in common will be far apart. Also, the
clustering results will be stored into a structured data format for later use. Selected
compounds are then screened a second time using the pretrained machine learning models on
a given target and any compound predicted as active may be considered a drug candidate.
Figure 6 below shows the drug repurposing pipeline.

m Drug Compound Screening Step 1 Drug Compound Screening Step 2

ChEMBL Database Disease Target Selected Compounds
|/|/_|h/_|h/_|h/7? \'I T 4 - 4
Py I 7 o ~ _./ I , ;"I
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Figure 6. Using Clustering and Supervised Machine Learning for Drug Repurposing

4.4 Molecular Docking

Molecular docking is a computational technique used to model the interaction between a
ligand (drug molecule) and a target molecule (Morris & Lim-Wilby, 2008; Meng, Zhang,
Mezei & Cui, 2011). Molecular binding software aims to predict the binding energy and
affinity for the ligand to the target compound. Several docking software such are pyGOLD,
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CCCC, PTools (Patel, Brinkjost & Koch, 2017; Jones, Willett & Glen, 1995;Saladin,

Fiorucci, Poulain, Prévost & Zacharias, 2009) have open source APIs that can be accessed
using the python programming language. We intend to experiment on each of these and select
the best API for our project. Molecular docking will be added to our pipeline as the final
screening phase for all molecules that passed both the unsupervised and supervised screening
steps. Compounds with a high RMSD score can be validated as active drug candidates and

recommended for pre-clinical trials.

4.5 Web Application

The commercial product resulting from this project is an interactive web application where
users can benefit from this great innovation. By incorporating three screening elements on the
web app, users can reduce their work from working with millions of drugs to only a few
hundreds. The components of the web application are; a home page where users will be
guided on how to use the app, a page data mining, incase users want to analyze clean data
themselves, a page to offer users the possibility to predict the bioactivity on any target in our
database, a page to screen drugs using pretrained models, a page for further drug screening
using molecular docking, and a page with our contact information through which users can
reach us for support. The design of the web app is still in progress and figure 7 below shows
how the interface would look like for some components.
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n target. You can search the available disease names, as well as select the available target:
ome

Data Mining Load Data Selection Options
Please upload compound smiles Please select Disease
Drug Repurposing @ Drag and drop file here Browse files All

Limit 200MB per file » CSV, SMI, TXT

Molecular Docking
Load Data Please select Target

Contact
Or enter smiles here All

Predict

Load Smiles

Figure 7 (a). User Interface For Predicting Bioactivity of Drug Compounds on Targets: User
Options
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Figure 7 (c). User Interface for Building Custom Machine Learning Models

5. Innovative Direction

In our novel approach, we provide a pipeline for data preprocessing and analysis, as well as
machine learning models that are completely dependent on the data’s characteristics. This will
ensure that the models are not killed by the huge variability in various dataset characteristics.
One important aspect of good research is its reproducibility. Therefore, the software will be
made user friendly and adaptable to all possible use cases and computational drug discovery
experiments. Researchers can choose any target molecule, and based on the availability of
data in the involved databases, hit compounds, based on their bioactivity, can be validated for
the given target. Also, the integration of unsupervised machine for drug screening and
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supervised learning for further screening in drug repositioning is a novelty on its own. As a
case study, we use the available dataset of amyloid-beta protein target due to its importance in
Alzheimer's disease (Yamin et al., 2008), and to contribute to the current efforts and hope to
discover a new drug in treating Alzheimer's disease in the process.

6. Applicability

A common pipeline used by many drug discovery researchers is to create models that act as
filters for reducing the number of drugs to work with until a lead is found. We not just aim to
adapt our pipeline to this, but to build a web application that is hosted on the internet for all
users to access. This will require us to purchase an online server for hosting the application.
Cloud servers can be purchased from Upcloud and paid monthly with a minimal fee of 10 $
per month. Also, as lots of models will be trained, a database will be established on the cloud
server for storing models and intermediate results of our experiments. It is also planned to
purchase super computing services in order to improve our machine learning model training
efficiency and accelerate our research. Also, to provide users with the possibility of training
new models in real time is a service we wish to provide, however, this will require the
purchase of a server with much computational power, considering that many users will be
using the app simultaneously. This is perhaps a shortcoming to our project where we need
help. Nevertheless, with the data mining, bioactivity prediction, drug repurposing and
molecular docking pipelines, users will definitely have a gain making use of our application.

7. Estimated Cost and Project Scheduling

Table 3. Project Schedule

Assignee Mar

1. Data Mining Cyrille

2. Machine Learning | Atakan

3. Drug Repurposing | Cyrille

Atakan
4. Molecular Cyrille
Docking Atakan
5. Building and Cyrille

Hosting Web
Application
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Table 4. Project Cost Estimate
Product Cost Time

Amazon Computer 720 $ 1 year
Upcloud Server
(1 core, 2 GB memory, 50 120 $ 1 year
GB storage, 2TB transfer)

Total 840 $

8. Target Audience of Project Idea (Users)

The target audience of our project is pharmaceutical companies and scientists. This project
will enable the drug development process to take place in a shorter time, with less cost, and to
be more effective. Thus, it will be easier than usual to both increase the effect of drugs for
diseases that already have treatment and to develop drugs for diseases for which there is no

cure yet.
9. Risks
Important Risks Risk Management (Plan B)
Machine Learning models might e Molecular Docking will be added to the
1. | perform poorly and predict pipeline as extra screener to make sure that all
inactive compounds as active inactive compounds are removed
e Models will be saved for only common
There might not be enough diseases to save space
) storage on web server to store e Users will be provided with an option to train
" | trained models and clustering custom models on real time
results e Purchase a server with more storage and
memory.
e Experiments will be done to select the best
models and best optimal parameters such that
Users might experience delay users don’t have to perform hyper-parameter
3 while running the machine tuning nor waste time on training a weak
" | learning pipeline as it is time model for their study.
consuming. e Users can select any model or any group of
models and their experimental optimal
parameters may be applied.
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